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Partially chaotic ensembles

Nazakat Ullah*
Department of Physics, University of Mumbai, Vidyanagari Santa Cruz (E), Mumbai 400 098, India

~Received 7 May 1997!

The chaotic behavior of noninvariant matrix ensembles is studied by connecting the distribution of the
invariant traces of powers of the matrix with the distribution of matrix elements. Earlier results on the spacing
distribution for the Gaussian orthogonal ensemble can easily be derived using the present formulation. For the
ensemble in which one of the off-diagonal elements has ad-function distribution, the spacing distribution for
small spacing is derived and it is shown that it lies between that of Wigner and Poisson distributions.
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I. INTRODUCTION

The matrix ensemble theory that was introduced
Wigner @1# to study the distribution of the widths and pos
tions of compound nucleus resonances has now found m
applications in different areas of physics such as conden
matter physics and string theories. One area where ma
ensemble theory is currently used is the study of chaos.
distribution of the nearest level spacing is intimately co
nected with the chaotic behavior of the system. If the nea
level spacing distribution turns out to be a Wigner distrib
tion, then the system is completely chaotic, while if it is
Poisson distribution, then it shows that the system is in
grable. The main interest is to see how the level spac
distribution changes from Wigner to Poisson. This is done
studying partially chaotic ensembles.

It has been shown recently@2# that one could derive ana
lytic expression for the spacing distribution for small dime
sional matrices by first deriving an expression for the dis
bution of invariant traces of the matrix. In the present wo
we shall consider three-dimensional matrices to study
nearest level spacing distribution for two different distrib
tions of Hamiltonian matrix elements. We describe the f
mulation in Sec. II and discuss the conclusions in Sec. I

II. FORMULATION

Let us consider a three-dimensional symmetric Ham
tonian matrix with elementsHi j ~i,j51,2,3!. The distribution
of the elementsHi j is denoted byF($Hi j %),i< j . We are
interested in deriving an expression for the distribution of
three invariant quantities u5TrH, v5TrH2, and
w5TrH3. According to the theory of probability@3#, this
distributionP(u,v,w) is given by
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P~u,v,w!5E d~u2TrH !d~v2TrH2!

3d~w2TrH3! f ~$Hi j %!)
i< j

dHi j . ~1!

To integrate over the variablesHi j , we first make the or-
thogonal transformation

S H11

H22

H33

D 5S 1

A2
2

1

A6

1

A3

2
1

A2
2

1

A6

1

A3

0
2

A6

1

A3

D S y1

y2

y3

D . ~2!

This transformation makes the firstd function d(u2A3y3)
and we could immediately integrate overy3.

Making two more transformations

H235r cosf, H135r sin f

and

y15R cosu A2H125R sin u,

we can write

P~u,v,w!5E dS S v2
u2

3 D2~R21y2
212r2! D dS ~w1 7

18u3

2 3
2 uv !2S 1

A6
y2

32
3

A6
R2y22 1

2 uy2
22 1

2 R2u

2ur21
3

A6
r2y22

3

A2
r2R cos~u12f!D D

3 f r dr dfR dR du dy2 . ~3!

The function f is now a function of the new variables; it
final form will be given later.
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By carrying out integration over one of the angular va
ables and after a few simplifying steps we finally get

P~u,v,w!5E dS A6~w1 2
9 u32uv !

S v2
u2

3 D 3/2 14x1
323x1

9
2 x3

2x1

13A3

2
x3

2x2D ~ f 1 f̂ !df)
i 51

3

dxi , ~4!

where the region of integration is( i 51
3 xi

2<1. The function
f (H11,H22,H33,H12,H13,H23) in terms of new variables
has the form

f S 1

A2
F S 2A3

2
x̂11

1

2
x̂2D cosf1 x̂3 sin fG

2
1

A6
S 1

2
x̂11A3

2
x̂2D

1
1

3
u,2

1

A2
F S 2A3

2
x̂11

1

2
x̂2D cosf1 x̂3 sin fG

2
1

A6
S 1

2
x̂11A3

2
x̂2D 1

1

3
u,

2

A6
S 1

2
x̂11A3

2
x̂2D

1
1

3
u,

1

A2
F x̂3 cosf2S 2A3

2
x̂1

1
1

2
x̂2D sin fG , 1

A2
rsin

f

2
,

1

A2
rcos

f

2 D ~5!

and f̂ is obtained from f by replacing f with f12p;
x̂i5(v2u2/3)1/2xi andr5@(v2u2/3)(12( i 51

3 xi
2)#1/2.

Before we proceed further we apply Eq.~4! to the rota-
tionally invariant Gaussian orthogonal ensemble~GOE! for
which

f ~$Hi j %!5exp~2TrH2!. ~6!

It is easy to see from Eq.~5! that the functionf in terms of
the new variables is

f 5exp~2v !. ~7!

Thus, from Eq.~4!, P(u,v,w) for the GOE is given by

P~u,v,w!5@exp~2v !#E dS A6~w1 2
9 u32uv !

S v2
u2

3 D 3/2 14x1
3

23x11 9
2 x3

2x11
3A3

2
x3

2x2D )
i 51

3

dxi . ~8!

It is shown in the Appendix thatd function in Eq.~8! implies
that
21<
A6~w1 2

9 u32uv !

S v2
u2

3 D 3/2 <1. ~9!

Therefore,P(u,v,w) for the GOE is given by

P~u,v,w!5exp~2v !, ~10!

the range ofw being given by Eq.~9!, 2A3v<u<A3v, and
0<v<`.

In the earlier work@2# on two dimensions it was show
that if the functional form of the distributionf is noninvari-
ant under rotation, then the nearest spacing distribution s
deviating from Wigner’s spacing distribution. We wou
now like to introduce a noninvariant distributionf in three
dimensions and see how the spacing distribution behave
small spacings. One such simple distribution introduced b
Molinari and Sokolov@4# is

f 5@exp~2TrH2!#d~H13!, ~11!

in which the off-diagonal elementH13 is taken to be zero.
Using Eqs.~4! and ~5!, we find thatP(u,v,w) for this non-
invariant ensemble is given by

P~u,v,w!5E dS A6~w1 2
9 u32uv !

S v2
u2

3 D 3/2 14x1
323x11 9

2 x3
2x1

1
3A3

2
x3

2x2D F S v2
u2

3 D S 12(
i 51

3

xi
2D G21/2

3@exp~2v !#)
i 51

3

dxi . ~12!

Since we are interested in the spacing distribution, we fi
write the distribution of the eigenvaluesEi . This is related to
P(u,v,w) by

g~E1 ,E2 ,E3!5E dS (
i 51

3

Ei2uD dS (
i 51

3

Ei
22v D

3dS (
i 51

3

Ei
32wD)

i , j
uEi2Ej u

3P~u,v,w!du dv dw. ~13!

According to Wigner@3#, the nearest level spacing distribu
tion p(s) can be obtained by settingE152s/2 andE25s/2
and integrating overE3 from 2` to 2s/2 ands/2 to ` in
Eq. ~13!. Thusp(s) is given by



u-
th
t

xi-

-

g

.
t
is

to
g it
s.
u-

of

he
ix
a

al

a-
m
ing

he-

ne
e

al
Pro-
ni-

352 57NAZAKAT ULLAH
p~s!5s expS 2
s2

2 D E
s/2

` S u22
s2

4 D
S 2

3 u21
s2

2 D 1/2exp~2u2!

3dS A6~ 2
9 u32 1

2 s2u!

~ 2
3 u21 1

2 s2!3/2
1S 4x1

323x11 9
2 x3

2x1

1
3A3

2
x3

2x2D D F12(
i 51

3

x1
2G21/2

du)
i 51

3

dxi . ~14!

We can easily carry out the integration overx3 using thed
function to get

p~s!5s expS 2
s2

2 D E
s/2

`
u22

s2

4

S 2
3 u21

s2

2 D 1/2exp~2u2!

3@l14x1
323x1#21/2F2l24x1

313x1

2@12~x1
21x2

2!#S 9
2 x11

3A3

2
x2D G21/2

du dx1 dx2 ,

~15!

where

l5
A6~ 2

9 u32 1
2 s2u!

~ 2
3 u21 1

2 s2!3/2
. ~16!

The region of integration overx1 ,x2 is the one for which the
product of the terms in square brackets in Eq.~15! remains
positive.

By making a change of variable inx2 and after some
simplification, we can write Eq.~16! as

p~s!5s expS 2
s2

2 D E
s/2

` S u22
s2

4 D
S 2

3 u21
s2

2 D 1/2exp~2u2!

3@l14x1
323x1#21/2@2l14q3

23q#21/2du dx1 dq. ~17!

In writing the expressions for various probability distrib
tions above, we have omitted any numerical constants
multiply these expressions, as they can be obtained in
end by normalization condition.

In general, it is difficult to integrate Eq.~17! in closed
form. Since we are interested in the behavior ofp(s) for
small s, we first writel as
at
he

l512
27

8

s2

u2 . ~18!

We can then find the three roots of the cubic in this appro
mation and carry out integrations overx1 ,q for small s,
which gives

~4 ln22 lns1 lnu!. ~19!

In the small-s limit, carrying out the final integration overu
then gives

p~s!5const3s~4 ln22 1
2 g2 lns!, s→0, ~20!

whereg is Euler’s constant@5#.
Comparing Eq.~20! with the usual Wigner spacing distri

bution pW(s)→const3s, we find thatp(s) for partially cha-
otic ensembles is of the form2s lns for small s, that is, it
has a logarithmic divergence for smalls.

We would like to convert Eq.~20! into a form that is
usually used in the study of chaos. Writin

12 lns/(4 ln22 1
2 g) approximately as exp@2lns/(4 ln2

2 1
2 g)#, we get

p~s!5const3s0.6 ~21!

for small values ofs. The approximate form given by Eq
~21! will be valid as long as 0.09<s!1. Thus the neares
level spacing distribution for the noninvariant distribution
in between that of the Wigner and Poisson distributions.

III. CONCLUDING REMARKS

In the present work we have developed a formulation
study the nearest level spacing distribution by connectin
directly to the distribution of Hamiltonian matrix element
This is done by first deriving an expression for the distrib
tion of the invariant traces of powers ofH. It can be easily
shown that the earlier result for the spacing distribution
the invariant GOE@3# can be obtained from Eqs.~10! and
~13!. The present formulation provides a way to study t
spacing distribution for any noninvariant Hamiltonian matr
elements distribution. In the present work it is applied to
noninvariant distribution in which one of the off-diagon
elements has ad-function distribution.

In the present study we have considered 333 random ma-
trices and obtained analytic results. In the past Cheon@7# has
carried out numerical calculations for large dimensional m
trices to see the transition of the spacing distribution fro
Wigner to Poisson. One interesting result is that the spac
distribution in these calculations can be fitted by the p
nomenological Brody@8# distribution. The Brody distribu-
tion for small values ofs has the same behavior as the o
given by Eq.~21!. Thus our results are consistent with th
one obtained by Cheon@7# for large dimensional matrices.
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APPENDIX

To find the moments of thed function in expression~8! we set

t5
A6~w1 2

9 u32uv !

S v2
u2

3 D 3/2 ;

then we can write a moment generating function@6# of the d function appearing in Eq.~8! as

( `n50

~2 ia!n

n! E dt tndS t14x1
323x11 9

2 x3
2x11

3A3

2
x3

2x2D)
i 51

3

dxi

5E exp~2 ia!F4x1
323x11 9

2 x3
2x11

3A3

2
x3

2x2G)
i 51

3

dxi , ~A1!

the integration being over the region( i 51
3 xi

2<1. Expanding the exponential function and carrying out the integrations, one
write

(
n50

`
~2 ia!n

n!
^tn&5 (

n50

`

~2 ia!2n(
s,m

2F1~2m1 1
2 ,22n1s12m;n1s12m1 5

2 ; 3
2 !

3
~21!s

s!

22s24m2232n2s1m11

~2n2s22m!!

G~2m1 1
2 !

Apm!

G~n1s2m1 1
2 !

G~n1s12m1 5
2 !

, ~A2!

where 2F1 is a hypergeometric function@5#. Thus all the odd moments oft vanish and even moments are^t2&5 1
3 , ^t4&5

1
5, etc., which shows thatt has a uniform distribution between21 and11.
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