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Partially chaotic ensembles

Nazakat Ullah
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The chaotic behavior of noninvariant matrix ensembles is studied by connecting the distribution of the
invariant traces of powers of the matrix with the distribution of matrix elements. Earlier results on the spacing
distribution for the Gaussian orthogonal ensemble can easily be derived using the present formulation. For the
ensemble in which one of the off-diagonal elements hdsfanction distribution, the spacing distribution for
small spacing is derived and it is shown that it lies between that of Wigner and Poisson distributions.
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l. INTRODUCTION
P(u,v,W)zf S(u—TrH)8(v —TrH?)

The matrix ensemble theory that was introduced by
Wigner[1] to study the distribution of the widths and posi- X 5(W—TrH3)f({Hij})H dH;; . (1)
tions of compound nucleus resonances has now found many 1=l
applications in different areas of physics such as conden:sec;}—0 integrate over the variablds;, we first make the or-
matter physics and string theories. One area where matrifﬁogonal transformation N
ensemble theory is currently used is the study of chaos. The
distribution of the nearest level spacing is intimately con-

nected with the chaotic behavior of the system. If the nearest i - i i
level spacing distribution turns out to be a Wigner distribu- V2 V6 V3
tion, then the system is completely chaotic, while if it is a Hu 1 1 1 Y1
Poisson distribution, then it shows that the system is inte- Hypl=| —— —— — Yo . (2
grable. The main interest is to see how the level spacing Has V2 V6 \/5 Va
distribution changes from Wigner to Poisson. This is done by 2 1
studying partially chaotic ensembles. 0 - =
It has been shown recent]®] that one could derive ana- ‘/6 ‘/§

|¥tIC expression for t.he spacing distribution _for small dlrrPen._This transformation makes the firstfunction 8(u— +/3ys)
sional matrices by first deriving an expression for the distri- . . .
and we could immediately integrate owgy.

bution of |nvar!ant traces qf the matr|x. In t_he present work Making two more transformations
we shall consider three-dimensional matrices to study the
nearest level spacing distribution for two different distribu- Hys=p COS ¢,
tions of Hamiltonian matrix elements. We describe the for-

mulation in Sec. Il and discuss the conclusions in Sec. lll. and

Hiz=p sin ¢

y,=R cosé \/§H12= R sin 6,
IIl. FORMULATION )
we can write

Let us consider a three-dimensional symmetric Hamil- U2
tonian matrix with eIgmentBIii (1,j=1,2,3. The qllstrlbutlon P(U,v,W)=f 5((0 _ _) —(R2+y§+2p2)) 5
of the elementsH;; is denoted byF({H;;}),i<j. We are 3
interested in deriving an expression for the distribution of the
three invariant quantities u=TrH, v=TrH? and
w=TrH23. According to the theory of probabilitj3], this
distribution P(u,v,w) is given by

(W+ 5ud

1 3
- %UU)—(—Gyi——Rzyz— suy;— 3R

V6" e

—up?+ i/ozyz—isz cog 6+2¢)
3 V2
Xfp dp dpR dR & dy,. 3)

*Permanent address: Tata Institute of Fundamental Research,
Homi Bhabha Road, Colaba, Mumbai 400 005, India. ElectronicThe functionf is now a function of the new variables; its
address: nu@tifrvax.tifr.res.in final form will be given later.
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By carrying out integration over one of the angular vari-

ables and after a few simplifying steps we finally get

JB(w+ 2ud—up)

P(U,UaW):f ) ( u2)3’2

+4x3—3x, 3x3%,

Vg

3
+3\Fx3x2 (f+?°)o|¢__H1 dx;, 4

where the region of integration E
f(Hy1,H22,Has, Hip,Haz, H
has the form

f(%{( - \[5;(1+ % >A<2)cos¢>+§<3 sin ¢
1(1. \F
—% §X1+ EXZ

+ %u,—%“—\[ﬁ)}ﬁ Ly

Exz)cos¢>+§<3 sin ¢
1 2 (
+ - u—

_,x?<1. The function
23) N terms of new variables

1.

3.
E X1+ EXZ

1 1. ( \[
+ 3U'E X3 COS¢p—| — Exl
% )sm b, \/l_psmg \;ﬁpCOS?) (5)

and f is obtained fromf by replacing¢ with ¢+ 27,
X = (v—Uu?3)Y%; andp=[(v—u?3)(1-=3_,x?)]*2
Before we proceed further we apply E(ql) to the rota-

tionally invariant Gaussian orthogonal ensem@&OE) for
which
f({Hi;})=exp —TrH?). (6)

It is easy to see from Ed5) that the functionf in terms of
the new variables is

f=exp(—v).
Thus, from Eq.(4), P(u,v,w) for the GOE is given by

\/_(W+ —uv)
U2\ 32
-]

\/—X3x2 H

@)

P(u,v,W)Z[eXF(—v)]j o

—3x;+3 x3xl

(8)

It is shown in the Appendix that function in Eq.(8) implies
that
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\/—(W-l- ul—uv)
[232 <1. 9)
5]
Therefore,P(u,v,w) for the GOE is given by
P(u,v,w)=exp —v), (10)

the range ofv being given by Eq(9), — V3v<u<3v, and
Osp=sw

In the earlier work[2] on two dimensions it was shown
that if the functional form of the distributiof is noninvari-
ant under rotation, then the nearest spacing distribution starts
deviating from Wigner's spacing distribution. We would
now like to introduce a noninvariant distributidnin three
dimensions and see how the spacing distribution behaves for
small spacings. One such simple distribution introduced by
Molinari and SokoloV{4] is

f=[exp(—TrH?)]6(H), (11)

in which the off-diagonal elemert |5 is taken to be zero.
Using Eqgs.(4) and(5), we find thatP(u,v,w) for this non-
invariant ensemble is given by

J6(w+2ud—uv)
P(U,U,W):f 6 ( u2)3/2
v— —

+4x3— 3%, + Ix3x,

3[

——x5%,

3
x[exp(—v)]l;[l dx; . (12)

Since we are interested in the spacing distribution, we first
write the distribution of the eigenvalu&s. This is related to

P(u,v,w) by
3
—u)a(El E?—v)

2E3)HE ||

XP(u,v,w)du dv dw.

3
maaa#J%EE

(13

According to Wigner[ 3], the nearest level spacing distribu-
tion p(s) can be obtained by settirtgy, = —s/2 andE,=s/2
and integrating oveE; from — to —s/2 ands/2 to » in
Eq. (13). Thusp(s) is given by
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( , § L1 27 2 18
2\ = (Y2 , T8 u (18
p(s)=sex —3 wexp(—u )
S/2< 2y2 _) We can then find the three roots of the cubic in this approxi-
2 mation and carry out integrations ove&g,q for small s,

V6(5u®—3s?u)

(%UZ_’_ %52)3/2

|

We can easily carry out the integration overusing theé
function to get

S2
2

x[)\+4x§—3x1]1’2{ —A—4x3+3x;

+| 43— 3x,+ 3x%x,

!

3V3 ,
+TX3X2

-1/2 3

3
1-> x| dul] dx. (149
<1 =1

2

4

_u

J —————exp — u?)
1/2

5/2(

p(s)=s exn( Vi

3 2

3.3 —-1/2
—[1-(x3+x3)] §x1+%_x2> du dx dx,,
(15
where
JB(5u-3s%u)
=T (16)

(§u2+ %82)3/2 )

The region of integration ovet; ,X, is the one for which the
product of the terms in square brackets in Etp) remains
positive.

By making a change of variable ir, and after some
simplification, we can write Eq.16) as

2
2

X[N+4x3—3x,] Y -\ +4q°

SZ

=
- 4
J <—1/§eXp(—U2)

p(s)=s exn(— 2
si2[ , 5 S
_u +_

s 2

—3q] Y2du dx da. 17

In writing the expressions for various probability distribu-

which gives

(4 In2—Ins+1Inu). (29
In the smalls limit, carrying out the final integration over
then gives

p(s)=consts(4 In2—3y—Ins), s—0, (20
wherey is Euler’s constanf5].

Comparing Eq(20) with the usual Wigner spacing distri-
bution p\y(s) — constx s, we find thatp(s) for partially cha-
otic ensembles is of the form s Ins for small s, that is, it
has a logarithmic divergence for small

We would like to convert Eq(20) into a form that is
usually used in the study of chaos. Writing

1—Ins/(4 In2—%y) approximately as eXfp-Ins/(4 In2
—37)], we get

p(s)=constx s%6 (21)
for small values ofs. The approximate form given by Eq.
(22) will be valid as long as 0.08s<1. Thus the nearest
level spacing distribution for the noninvariant distribution is
in between that of the Wigner and Poisson distributions.

IlIl. CONCLUDING REMARKS

In the present work we have developed a formulation to
study the nearest level spacing distribution by connecting it
directly to the distribution of Hamiltonian matrix elements.
This is done by first deriving an expression for the distribu-
tion of the invariant traces of powers bf. It can be easily
shown that the earlier result for the spacing distribution of
the invariant GOE3] can be obtained from Eq$10) and
(13). The present formulation provides a way to study the
spacing distribution for any noninvariant Hamiltonian matrix
elements distribution. In the present work it is applied to a
noninvariant distribution in which one of the off-diagonal
elements has &-function distribution.

In the present study we have considered3¥andom ma-
trices and obtained analytic results. In the past CH&bhas
carried out numerical calculations for large dimensional ma-
trices to see the transition of the spacing distribution from
Wigner to Poisson. One interesting result is that the spacing
distribution in these calculations can be fitted by the phe-
nomenological Brody{8] distribution. The Brody distribu-
tion for small values of has the same behavior as the one
given by Eq.(21). Thus our results are consistent with the
one obtained by Chedi¥] for large dimensional matrices.

tions above, we have omitted any numerical constants that
multiply these expressions, as they can be obtained in the
end by normalization condition.

In general, it is difficult to integrate Eq17) in closed
form. Since we are interested in the behaviorpgt) for
small s, we first write\ as
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APPENDIX

To find the moments of thé function in expressioli8) we set

\/—(W+ 2ud—uv)

U2\ 32 ;
5

then we can write a moment generating functiéh of the § function appearing in Eq8) as

> _I_a)nJ dt t"s

33
t+4x3— 3%, + %x%xﬁT\/—x%xz) |1;[1 dx;

3 9,2
4x7— 3%+ 5x3x1+ x3x2

3
1] dx;, (A1)

=fexp(—ia)

the integration being over the regié}iﬁ 1xi2s 1. Expanding the exponential function and carrying out the integrations, one can
write

“(—ia)"
> ( ) (t"y= E (—|a)2”2 JF (2u+ i, —2n+s+2uin+s+2u+ 33
n=0

(_1)5 225*4/1.*232n*5+,u+l F(Z,U«"'%) F(n+s—,u+%)
! (2n—s—2pu)! Jap! T(n+s+2u+3)’

(A2)

where ,F, is a hypergeometric functiofb]. Thus all the odd moments ¢fvanish and even moments ag)=3, (t*)=
%, etc., which shows thathas a uniform distribution betweenl and+1.
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